Air | Gas | Mould
Tubular Heater
Bundle Heater
Finned Heater
Ducting Heater
PTC Heater
Anti Condensation Heater
Air Immersion Heater
Cartridge Heater
Silicon Carbide (SIC) Heater
Ceramic Bobbin Heater
Pencil Heater
Ceramic Fiber Heater
Flexible Silicone Rubber Heater
Air Circulation Heater
Hot Air Blower
Ceramic Infrared Heater
Quartz Infrared Heater
Band Heater
Ceramic Band Heater
Strip Heater
Cast-In Heater
Mineral Insulation Heater
Halogen Infrared Heater
Black Infrapara Heater
Infrared Silica Quartz Heater
Liquid
Immersion Heater
Teflon Heater
Inline Circulation Heater
Bobbin Heater
Tank Heater
Drum Heater
Jacket Heater
Explosion Proof Heater
Defrost Heater
Specialty Heating + Controls
Heat Trace
Control Panel & System Solutions
Industrial Hot Water Calorifier
Industrial Hot Water System
Electric Heater Steam Boiler
Oil Flushing Skids
Thermal Fluid Analysis
Heat Tape/Heated Sample Lines
Heated Hoses
Flexible Ceramic Heating Pads
Explosion Proof Air Heater
Explosion Proof Duct Heater
Explosion Proof Immersion Heater
Explosion Proof Line Heater
Explosion Proof Process Heater
Oven | Furnace
Thermocouple
RTD
Sanitary Probe
Platinium Curve Rigid Averaging
Cable Thermocouple
MI Thermocouple
HVAC Temperature Sensor
Handheld Probe
Wireless Temperature Transmitter
Green Mark Precision Temperature Sensor
Thermocouple Accessories
Thermowell
Temperature | Humidity | Dew Point
Temperature Controllers
Indicator
Transmitters
Data Logger
Temperature Gauges/Thermometer
Refrigeration
Thermostats
Handheld | Infrared | Thermal
Water Activity
Dehumidifiers | Humidifiers | Air Purifier
Thermocouples
RTD | PT100 Sensors
ATEX thermocouples
Thermowells
Ceramic Rollers
Calibration
Pressure
Pressure Transducers | Transmitters
Differential Pressure Transmitter
Pressure Gauges
Pressure Switches
Accessories
Level
Float Switch
Hydrostatic Level Probe
Level Switches & Transmitters
By-pass Level Transmitter
Capacitance Level Switch
Magnetic Level Sensor
Ultrasonic Level Sensor
Vibrating Level Switch
Air | Gas | Liquid Flow
Air Flow/Air Velocity Meter
Variable Area Flow Meter
Electromagnetic Flow Meters
Sanitary Magnetic Flow Meter
Positive Displacement Flow Meter
Insertion Magnetic Flow Meter
Liquid Turbine Flow Meter
Coriolis Mass Flow Meter
Ultrasonic Flow Meter
Vortex Flow Meter
Gas Roots Flow Meter
Gas Turbine Flow Meter
Oval Gear Flow Meter
Fluorescence Dissolved Oxygen
Recorder
SSR & Power Regulator
Signal Conditioners & Isolators
Power Supply
Communication Products & Converters
Control Components
- Sensors
- Temperature Controller
- Timer / Counter
- Indicator
- Switches
- Terminal Block / Buzzer
- Signal Light
Frequnecy Inverter | Drive
Thermocouple Cable
Extension Cable
Heat Resistant Cable
Power/Instrument/Control Cable
Braided Screen Cable
Solar Cable
Low Voltage Cable
LK Instrumentation Cable
Offshore Cable
Control Cable
Marine Cable
Air-Operated Double Diaphragm Pumps
Control and Measuring Instruments
Motor Driven Pumps
Solenoid Dosing Pumps
Mobile Safety / Ex-Proof Smartphone
Products for Automotive Industry
Test Instruments
Wireless Sensor, Transmitters, Receivers, Meter & Controllers
Dpstar is one of the largest manufacturers of Temperature sensors / Thermocouple / RTD in Malaysia. We offer custom Thermocouple / RTD / Temperature Sensors that are tailored to your unique specifications. RTD’s are temperature measuring sensors that use the resistance/temperature relationship of material to measure the temperature of a body. RTDs have higher accuracy and stability as compared to Thermocouples usually in the below 600 °C range. Resistance temperature sensors are composed of realizing material generally Copper, Nickel, or platinum, which shows resistance at a specific temperature. If we want to measure temperature with high accuracy, an RTD is an ideal solution, as it has good linear characteristics over a wide range of temperatures.
RTDs or Resistance Temperature Detectors are temperature sensors that contain a resistor that changes resistance value as its temperature changes. The most popular RTD is the Pt100. They have been used for many years to measure temperature in laboratory and industrial processes, and have developed a reputation for accuracy, repeatability, and stability.
Most RTD elements consist of a length of fine coiled wire wrapped around a ceramic or glass core. The element is usually quite fragile, so it is often placed inside a sheathed probe to protect it. The RTD element is made from a pure material whose resistance at various temperatures has been documented. The material has a predictable change in resistance as the temperature changes; it is this predictable change that is used to determine temperature.
The pt100 is one of the most accurate temperature sensors. Not only does it provide good accuracy, but it also provides excellent stability and repeatability. Pt100 is also relatively immune to electrical noise and therefore well suited for temperature measurement in industrial environments, especially around motors, generators, and other high voltage equipment.
An RTD consists of a resistance element and insulated copper wires. The most common number of wires is 2; however, some RTDs have 3 or 4 wires. The resistive element is the temperature sensing element of the RTD. It is usually platinum because as a material it is highly stable over time, it has a wide temperature range, it offers an almost linear relationship between temperature and resistance and it has a chemical inertness. Nickle or copper are also other popular choices of material for the resistive element.
An RTD works by using a basic principle; as the temperature of a metal increases, so does the resistance to the flow of electricity. An electrical current is passed through the sensor, the resistance element is used to measure the resistance of the current being passed through it. As the temperature of the resistance element increases the electrical resistance also increases. The electrical resistance is measured in Ohms. The resistance value can then be converted into temperature based on the characteristics of the element. The typical response time for an RTD is between 0.5 and 5 seconds making them suitable for applications where an immediate response is not required.
Resistance Temperature Detectors (RTDs) available today can generally be categorized into one of two basic types of RTDs, depending on how their temperature sensing element is constructed.
1. Wire-wound RTD This type of RTD has a small diameter wire, most commonly of platinum that is wound in a coil placed inside a ceramic/glass insulator. Extension wires are welded to this platinum coil that extends outside the insulator body. This type of sensor is longer in length and are more delicate compared to Thin Film. Wire wound RTD has good accuracy over a wider temperature range.
2. Thin-film RTD elements Thin-film elements are made by depositing a very thin layer of resistive platinum metal on a ceramic base. This film is then coated with an epoxy or glass that helps protect the deposited film and also acts as a strain relief for the external lead wires. This type of RTD performs better in vibration application and for spot temperature measurement. Thin-film sensors are the most widely used sensor type due to their versatility and cost-effectiveness. RTD can also be differentiated based on the resistance element material. They are commonly referred to as Pt100, P1000, Ni120, Cu100, etc.
RTDs are used within different industries including; automotive, white goods, marine, and industrial applications. The benefits of using RTDs over other temperature sensors are;
Platinum elements are most widely used, it has excellent resistance to corrosion, long term stability, and a wider temperature range from -200 °C to 1000 °C.
Nickel elements are less expensive compared to Platinum elements, they have higher resistance at 0 °C and are offer higher sensitivity due to the high resistance ratio. However, they have a limited temperature range of -80°C to 260°C, and they age quicker.
Copper elements have excellent resistance to temperature linearity compared to the other elements and is a low-cost material. However, it is less resistant to corrosion and its use is limited to a temperature range of -200°C to 260°C.
Wide choice of sensor type, element materials, and configurations can sometimes be intimidating for you to select the right product, our team of experts is always at your disposal to help you chose the right product for your measurement needs. For more info, Get in touch with us!
Maltec-T RTD_DpstarGroup
There are no reviews yet.
Your email address will not be published. Required fields are marked *
Your review *
Name *
Email *
Save my name, email, and website in this browser for the next time I comment.
Product Enquiry
Your Name (required)
Your Company Name (required)
Your Email (required)
Your Contact No
Product Name
From where you know about us Google SearchPaid SearchSocial MediaLinkedinFacebookEmail MarketingReferral
Your Message