Thermocouple extension and compensating cables RT-2Y(St)2YSWAY PIMF, RT-Y(St)YSWAY PIMF **Works Standard** Multipairs, layers, individual and collective screen, round wire armour Conductor diameter 0.8 mm 1.02 mm 1.13 mm 1.29 mm 1.38 mm #### Description: - Solid conductor* of thermocouple material to table page 55 - Insulation polyvinylchloride YI3 or polyethylene 2YI1 to DIN VDE 0207 - Cores twisted to form pairs - Colour code: see table page 55 - Individual screen of plastic bonded aluminium tape with tinned copper drain wire 0.6 mm, polyester tapes over and under the screen; approx. 25% overlap - Screened pairs twisted in concentric layers - Wrapping of polyester tape(s) - Collective screen of plastic bonded aluminium tape with tinned copper drain wire 7 x 0.3 mm, polyester tape(s); approx. 25% overlap - Bedding of polyvinylchloride or polyethylene - Galvanized steel wire armour to BS 1442 - Outer sheath of polyvinylchloride YM1 to DIN VDE 0207, colour: see table page 55, for intrinsically safe systems: blue with identification stripe #### Abbreviations: RT- thermocouple extension and compensating cable 2Y insulation or sheath of polyethylene Y insulation or sheath of polyvinylchloride (St) collective screen SWA galvanized steel wire armour PiMF individual pair screen #### Application for transmission of thermoelectric voltage from measuring junction to reference junction #### Use: for indoor and outdoor installation and direct burial ### Temperature rating: during operation: during installation: -30 °C up to +70 °C - 5 °C up to +50 °C # Min. bending radius: 10 x d (d = overall diameter) #### Other properties: flame relardant to DIN VDE 0472 part 804 test method B ## Electrical properties at 20 °C** | | | Character | Unit | Conductor size | | | | | |--|-------------------------------|-----------|----------------|----------------|---------|---------|---------|---------| | | | | | 0.8 mm | 1.02 mm | 1.13 mm | 1.29 mm | 1.38 mm | | Insulation resistance | PE-insulated
PVC-insulated | min. | $M\Omega x km$ | 5000
100 | | | | | | Mutual capacitance
at 800 Hz | PE-insulated
PVC-insulated | max. | nF/km | 120
170 | | | | | | Test voltage
Core: core
Core: screen | U _{ell} | | V | 2000
1000 | | | | | | Operating voltage | U _{ett} | max. | ٧ | 300 | | | | | ^{*} conductor also available with 0.20 mm strands ^{**} for loop resistance and inductance please see tables on pages 55 and 57 | Data sheet | (geometrical) | : solid conductors | |------------|---------------|--------------------| |------------|---------------|--------------------| | Number of pairs | Conductor | Thickness
of insulation
(nominal)
mm | Steel wire
diameter
(approx.) | Thickness
of outer
sheath
(nominal)
mm | Overall
diameter
(nominal)
mm | Cable weight (approx.) kgs/km | |--|--|---|--|---|--|--| | Conductor size | | (100) | 3,000 | | | | | William Street Street | | | 0.0 | 4.4 | 100 | 270 | | 2
4
6
8
10
12
16
20
24 | 1/0.8
1/0.8
1/0.8
1/0.8
1/0.8
1/0.8
1/0.8
1/0.8 | 0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4 | 0.9
0.9
0.9
1.25
1.25
1.25
1.25 | 1.4
1.4
1.5
1.5
1.5
1.6
1.6 | 12.0
13.4
15.4
16.2
18.5
19.3
21.0
22.5
24.9 | 270
340
470
595
670
710
820
1090
1210 | | Conductor size | 1.02 mm | | | | | | | 2 | 1/1.02 | 0.4 | 0.9 | 1.4 | 12.0 | 320 | | 4
6
8
10
12
16
20
24 | 1/1.02
1/1.02
1/1.02
1/1.02
1/1.02
1/1.02
1/1.02
1/1.02 | 0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4 | 0.9
0.9
1.25
1.25
1.25
1.25
1.25
1.25 | 1.4
1.5
1.5
1.6
1.6
1.7
1.7 | 13.4
15.4
16.2
18.5
19.3
21.0
22.5
24.9 | 405
555
700
795
845
1145
1305
1465 | | Conductor size | e 1.13 mm | | | | | | | 2
4
6
8
10
12
16
20
24 | 1/1.13
1/1.13
1/1.13
1/1.13
1/1.13
1/1.13
1/1.13
1/1.13 | 0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4 | 0.9
0.9
1.25
1.25
1.25
1.25
1.6
1.6 | 1.4
1.4
1.5
1.5
1.6
1.6
1.7
1.7 | 13.4
15.1
18.1
18.9
20.9
21.5
24.7
26.4
28.2 | 350
440
600
755
850
910
1245
1420
1600 | | Conductor size | e 1.29 mm | | | | | | | 2
4
6
8
10
12
16
20
24 | 1/1.29
1/1.29
1/1.29
1/1.29
1/1.29
1/1.29
1/1.29
1/1.29
1/1.29 | 0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4 | 0.9
0.9
1.25
1.25
1.25
1.25
1.6
1.6 | 1.4
1.5
1.5
1.6
1.6
1.7
1.7
1.8
1.8 | 13.9
16.0
19.0
20.0
21.9
22.5
25.9
28.0
30.2 | 400
480
660
835
970
1200
1390
1605
1870 | | Conductor siz | e 1,38 mm | | | | 7 | | | 2
4
6
8
10
12
16
20
24 | 1/1.38
1/1.38
1/1.38
1/1.38
1/1.38
1/1.38
1/1.38
1/1.38 | 0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5 | 0.9
1,25
1.25
1.25
1.6
1.6
1.6
1.6 | 1.4
1.5
1.6
1.6
1.7
1.7
1.8
1.9 | 15.3
18.1
20.6
21.6
24.8
25.7
28.4
31.4
33.3 | 510
660
815
965
1245
1335
1580
1880
2135 | 105